(Source: arstechnica.com)

If Ryzen was a polite, if firm way of telling the world that AMD is back in the processor game, then Threadripper is a foul-mouthed, middle-finger-waving, kick-in-the-crotch “screw you” aimed squarely at the usurious heart of Intel. It’s an olive branch to a part of the PC market stung by years of inflated prices, sluggish performance gains, and the feeling that, if you’re not interested in low-power laptops, Intel isn’t interested in you.

Where Intel charges $1,000/£1,000 for 10 cores and 20 threads in the form of the Core i9-7900X, AMD offers 16C/32T with Threadripper 1950X. Where Intel limits chipset features and PCIe lanes the further down the product stack you go—the latter being ever more important as storage moves away from the SATA interface—AMD offers quad-channel memory, eight DIMM slots, and 64 PCIe lanes even on the cheapest CPU for the platform.

Threadripper embraces the enthusiasts, the system builders, and the content creators that shout loud and complain often, but evangelise products like no other. It’s the new home for extravagant multi-GPU setups, and RAID arrays built on thousands of dollars worth of M.2 SSDs. It’s where performance records can be broken, and where content creators can shave precious minutes from laborious production tasks, while still having more than enough remaining horsepower to get their game on.

Sure, dive deep into the technicalities and Intel’s Skylake-X is still the absolute fastest when it comes to pure instructions-per-clock performance and high-frame-rate gaming. But the sheer daring of AMD Threadripper and accompanying X399 platform is nothing short of astonishing. Its performance, particularly in content creation tasks and production workloads, wipes the floor with the Intel equivalent. Taken as a whole, there really is no competition—Threadripper is the High End Desktop (HEDT) platform to beat.

Double trouble

When AMD unveiled its Zen architecture, which finally morphed into a product as Ryzen, much was said about Infinity Fabric, the company’s new interconnect designed for maximum scalability. The 14nm FinFET Zen core is designed as a four-core-complex (CCX), with Infinity Fabric used to bind two CCX together to create the eight-core CPUs of Ryzen 7. What many didn’t quite realise at the time is just how well Infinity Fabric would work (after a few teething troubles were resolved, at least) and just how far AMD could push it.

Specs at a glanceAMD Threadripper 1950XAMD Threadripper 1920XAMD Threadripper 1900XAMD Ryzen 1800XArchitectureZenZenZenZenCores/Threads16/3212/248/168/16Base Clock3.4GHz3.5GHz3.8GHz3.6GHzMax Boost Clock4.0GHz4.0GHz4.0GHz4.0GHzXFR Boost200MHz200MHz200MHz100MHzL3 Cache32MB32MB?16MBProcess14nm14nm14nm14nmTDP180W180W125W95WPrice$1000/£1000$799/£799$549/£549$500/£449

Threadripper 1950X is effectively two eight-core Ryzen 1800X CPUs placed onto the same package joined together by Infinity Fabric. The result is a CPU measuring a mammoth 72mm by 55mm, which slots into the even larger TR4 motherboard socket. Threadripper is, physically at least, the biggest consumer CPU released since the cartridge slot format of the Pentium 2—and even then the CPU itself was just a small part of the cartridge.

The retail experience

AMD has embraced Threadripper’s ample frame with aplomb. It comes in ludicrously ostentatious retail packaging that’s as oversized and dramatic as the CPU itself. Opening it is a multistage process of tearing through paper seals, twisting a latch to “unlock the power,” and removing steel clamps and protective windows.

Yes it’s over-the-top, and yes, it’s a little bit silly. But the eye-catching packaging and involved unboxing experience is as much as testament to AMD’s bullish bid to woo the enthusiast as it is to an over zealous marketing team.

The advantages and disadvantages of AMD’s Infinity Fabric design are well documented at this point—and I’d advise taking a look at Peter Bright’s excellent deep dive into the Zen architecture to learn more—but many of the quirks that arose from it have since been patched out or tweaked. Do note, however, that Infinity Fabric performance still depends greatly on memory speed. Thankfully, running 3200MHz memory with a Threadripper CPU is as simple as loading an XMP profile—a far cry from the memory issues that plagued Ryzen at launch.

Indeed, with Threadripper being based so heavily on Ryzen, it’s a pleasingly stable platform. The only real difference is the memory configuration—which is now quad-channel with ECC support, thanks to the two dual-channel controllers present on each eight-core die—and the PCIe lane configuration, which now features 64 lanes, four of which are reserved for connection to the new X399 chipset.

With Threadripper, you can run two graphics cards at X16 PCIe speeds, two at X8, and still have enough lanes left over for three X4 NVMe SSDs connected directly to the CPU. Intel’s i9-series offers a mere 44 PCIe lanes on the CPU by comparison, but does make up the difference with a further 24 lanes on the motherboard (they do, however, share a single X4 PCIe link to the CPU).

There are two Threadripper CPUs available at launch: the 16C/32T 1950X, and the 12C/24T 1920X. Both feature the same 512K of L2 cache per core (8MB total), 16MB per die (32MB total) of L3 cache, and 4.0GHz boost clock across four cores. They can both boost as far as 4.2GHz across the same four cores thanks to AMD’s XFR (extended frequency range) enhancements, which offer increased clock speeds for those with suitably robust cooling setups. The only difference between them is the slight base clock bump to 3.5GHz on the 1920X, versus the 3.4GHz of the 1950X. Like the rest of the Ryzen line-up, both Threadripper CPUs are fully unlocked for overclocking.

At $1,000/£1,000, the 1950X offers 16C/32 where Intel offers just 10C/20T. While Intel’s superior IPC performance and clock speeds do make up some of the difference, to get the same core count with an i9 costs $1,700, while the the top-end 18C/36T i9-7980XE costs an eye-watering $2,000. The 1920X fares even better, offering 12C/24T for $800. Intel doesn’t have an equivalent chip for the price, only the more expensive i9-7900X, or the $600 i7-7820X, which features a mere 28 PCIe lanes and just eight cores. Simply put, AMD offers a lot more for a lot less.

More Info: arstechnica.com